DPP-1 (KTG)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/57

https://youtu.be/Ye7mcKHdp1I

https://physicsaholics.com/note/notesDetalis/32

Q 1. The postulates of kinetic theory will be true if the number of molecules be -
(a) Any
(b) Very large
(c) Very small
(d) Avogadro's number

Q 2. Which of the following statements about kinetic theory of gases is wrong
(a) The molecules of a gas are in continuous random motion
(b) The molecules continuously undergo inelastic collisions
(c) The molecules do not interact with each other except during collisions
(d) The collisions amongst the molecules are of short duration

Q 3. Under which of the following conditions is the law $P V=R T$ obeyed most closely by a real gas
(a) High pressure and high temperature
(b) Low pressure and low temperature
(c) Low pressure and high temperature
(d) High pressure and low temperature

Q 4. Acertain sample of gas has a volume of 0.2 litre measured at 1 atm pressure and $0^{\circ} \mathrm{C}$.
At the same pressure but at $273^{\circ} \mathrm{C}$, its wolume will be
(a) 0.4 litres
(b) 0.8 litres
(c) 27.8 litres
(d) 55.6 litres

Q 5. Figure shows two flasks connected to each other. The volume of the flask 1 is twice that of flask 2. The system is filled with an ideal gas at temperature 100 K and 200 K respectively. If the mass of the gas in 1 be m then what is the mass of the gas in flask 2

(a) m
(b) $\mathrm{m} / 2$
(c) $\mathrm{m} / 4$
(d) $\mathrm{m} / 8$

Q 6. If the pressure of an ideal gas contained in a closed vessel is increased by 0.5%, the increase in temperature is 2 K . The initial temperature of the gas is
(a) $27^{\circ} \mathrm{C}$
(b) $127^{\circ} \mathrm{C}$
(c) $300^{\circ} \mathrm{C}$
(d) $400^{\circ} \mathrm{C}$

Q 7. Air is pumped into an automobile tube upto a pressure of $200 k P a$ in the morning when the air temperature is $22^{\circ} \mathrm{C}$. During the day, temperature rises to $42^{\circ} \mathrm{C}$ and the tube volume expands by 2%. The pressure of the air in the tube at this temperature, will be approximately
(a) 212 kPa
(b) 206 kPa
(c) 209 kPa
(d) 200 kPa

Q 8. A vessel is filled with an ideal gas at a pressure of 10 atmospheres and temperature 27 ${ }^{\circ} \mathrm{C}$. Half of the mass of the gas is removed from the vessel and temperature of the remaining gas is increased to $87^{\prime} C$. Then the pressure of the gas in the vessel will be
(a) 5 atm
(b) 6 atm
(c) 7 atm
(d) 8 atm

Q 9. The pressure P, volume V and temperature T of a gas in the jar A and the other gas in the jar B at pressure $2 P$, volume $V / 4$ and temperature $2 T$, then the ratio of the number of molecules in the jar A and B will be-
(a) $1: 1$
(b) $2: 1$
(c) $1: 2$
(d) $4: 1$

Q 10. Which one of the following graphs represents the behavior of an ideal gas when

Q 11. During an experiment an ideal gas is found to obey an additional law $\mathrm{VP}^{2}=$ constant. The gas is initially at temperature T and volume V , when it expands to volume 2 V , the resulting temperature is -
(a) $T / 2$
(b) $\mathrm{T} / \sqrt{2}$
(c) $\mathrm{T} \sqrt{2}$
(d) 2 T

Q 12. A vessel has 6 g of hydrogen at pressure P and temperature 500 K . A small hole is made in it so that hydrogen leaks out. How much hydrogen leaks out if the final pressure is $\mathrm{P} / 2$ and temperature falls to 300 K -
(a) 2 g
(b) 4 g
(c) 3 g
(d) 1 g

Q 13. The figure shows pressure versus density graph for an ideal gas at two temperature T_{1} and T_{2} :

(a) $T_{1}>T_{2}$
(b) $T_{1}<T_{2}$
(c) $T_{1}=T_{2}$
(d) None of these

Q 14. A vessel is filled with a gas at a pressure of 76 cm of mercury at a certain temperature. The mass of the gas is increased by 50% by introducing more gas in the vessel at the same temperature. The resultant pressure, in cm of Hg , is -
(a) 76
(b) 114
(c) 152
(d) 1117

Q 15. Pressure versus temperature graph of an ideal gas is as shown in figure. Density of the gas at point A is ρ_{0}. Density at B will be

(a) $\frac{3}{4} \rho_{0}$
(b) $\frac{3}{2} p_{0}$
(c) $\frac{4}{3} \rho_{0}$
(d) $2 \rho_{0}$

Answer Key

Q. 1 b	Q. 2 b	Q. 3 c	Q. 4 a	Q. 5 c
Q. 6 b	Q. 7 c	Q. 8 b	Q. 9 d	Q. 10 d
Q. 11 c	Q. 12 d	Q. 13 a	Q. 14 b	Q. 15 b

